Atmos. Chem. Phys., 10, 10829-10848, 2010
www.atmos-chem-phys.net/10/10829/2010/
doi:10.5194/acp-10-10829-2010
© Author(s) 2010. This work is distributed
under the Creative Commons Attribution 3.0 License.
Atmospheric nucleation: highlights of the EUCAARI project and future directions
V.-M. Kerminen1,2, T. Petäjä1, H. E. Manninen1, P. Paasonen1, T. Nieminen1, M. Sipilä1, H. Junninen1, M. Ehn1, S. Gagné1, L. Laakso1,12, I. Riipinen1,13, H. Vehkamäki1, T. Kurten1, I. K. Ortega1, M. Dal Maso1,6, D. Brus2, A. Hyvärinen2, H. Lihavainen2, J. Leppä2, K. E. J. Lehtinen2,11, A. Mirme3, S. Mirme3, U. Hõrrak3, T. Berndt4, F. Stratmann4, W. Birmili4, A. Wiedensohler4, A. Metzger5,*, J. Dommen5, U. Baltensperger5, A. Kiendler-Scharr6, T. F. Mentel6, J. Wildt6, P. M. Winkler7,**, P. E. Wagner7, A. Petzold8, A. Minikin8, C. Plass-Dülmer9, U. Pöschl10, A. Laaksonen1,11, and M. Kulmala1
1Department of Physics, P.O. Box 64, 00014 University of Helsinki, Finland
2Finnish Meteorological Institute, Research and Development, P.O. Box 503, 00101 Helsinki, Finland
3Institute of Physics, University of Tartu, Ülikooli 18, 50090, Tartu, Estonia
4Leibniz-nstitute für Troposphärenforschung, Permoserstrasse 15, Leipzig 04318, Germany
5Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
6Institut für Chemie und Dynamik der Geosphäre (ICG), Forschungszentrum Jülich, 52425 Jülich, Germany
7Fakultät für Physik, Universität Wien, Boltzmanngasse 5, 1090 Wien, Austria
8Deutsches Zentrum für Luft- und Raumfarhr, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany
9Hohenpeissenberg Meteorological Observatory, Deutscher Wetterdienst, Germany
10Max Planck Institute for Chemistry, Biogeochemistry Department, P.O. Box 3060, 55128 Mainz, Germany
11Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland
12School of Physical and Chemical Sciences, North-West University, Potchefstroom, South Africa
13Department of Chemical Engineering, Carnegie Mellon University, 15213, Pittsburgh, PA, USA
*now at: Ionicon Analytik GmbH, 6020 Innsbruck, Austria
**now at: Atmospheric Chemistry Division, National Center for Atmospheric Research, 1850 Table Mesa Dr., Boulder, CO-80305, USA

Abstract. Within the project EUCAARI (European Integrated project on Aerosol Cloud Climate and Air Quality interactions), atmospheric nucleation was studied by (i) developing and testing new air ion and cluster spectrometers, (ii) conducting homogeneous nucleation experiments for sulphate and organic systems in the laboratory, (iii) investigating atmospheric nucleation mechanism under field conditions, and (iv) applying new theoretical and modelling tools for data interpretation and development of parameterisations. The current paper provides a synthesis of the obtained results and identifies the remaining major knowledge gaps related to atmospheric nucleation. The most important technical achievement of the project was the development of new instruments for measuring sub-3 nm particle populations, along with the extensive application of these instruments in both the laboratory and the field. All the results obtained during EUCAARI indicate that sulphuric acid plays a central role in atmospheric nucleation. However, also vapours other than sulphuric acid are needed to explain the nucleation and the subsequent growth processes, at least in continental boundary layers. Candidate vapours in this respect are some organic compounds, ammonia, and especially amines. Both our field and laboratory data demonstrate that the nucleation rate scales to the first or second power of the nucleating vapour concentration(s). This agrees with the few earlier field observations, but is in stark contrast with classical thermodynamic nucleation theories. The average formation rates of 2-nm particles were found to vary by almost two orders of magnitude between the different EUCAARI sites, whereas the formation rates of charged 2-nm particles varied very little between the sites. Overall, our observations are indicative of frequent, yet moderate, ion-induced nucleation usually outweighed by much stronger neutral nucleation events in the continental lower troposphere. The most concrete outcome of the EUCAARI nucleation studies are the new semi-empirical nucleation rate parameterizations based on field observations, along with updated aerosol formation parameterizations.

Citation: Kerminen, V.-M., Petäjä, T., Manninen, H. E., Paasonen, P., Nieminen, T., Sipilä, M., Junninen, H., Ehn, M., Gagné, S., Laakso, L., Riipinen, I., Vehkamäki, H., Kurten, T., Ortega, I. K., Dal Maso, M., Brus, D., Hyvärinen, A., Lihavainen, H., Leppä, J., Lehtinen, K. E. J., Mirme, A., Mirme, S., Hõrrak, U., Berndt, T., Stratmann, F., Birmili, W., Wiedensohler, A., Metzger, A., Dommen, J., Baltensperger, U., Kiendler-Scharr, A., Mentel, T. F., Wildt, J., Winkler, P. M., Wagner, P. E., Petzold, A., Minikin, A., Plass-Dülmer, C., Pöschl, U., Laaksonen, A., and Kulmala, M.: Atmospheric nucleation: highlights of the EUCAARI project and future directions, Atmos. Chem. Phys., 10, 10829-10848, doi:10.5194/acp-10-10829-2010, 2010.
 
Search ACP
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share